Granger Causality: Theory and Applications
نویسندگان
چکیده
A question of great interest in systems biology is how to uncover complex network structures from experimental data[1, 3, 18, 38, 55]. With the rapid progress of experimental techniques, a crucial task is to develop methodologies that are both statistically sound and computationally feasible for analysing increasingly large datasets and reliably inferring biological interactions from them [16, 17, 22, 37, 40, 42]. The building block of such enterprise is to being able to detect relations (causal, statistical or functional) between nodes of the network. Over the past two decades, a number of approaches have been developed: information theory ([4]), control theory ([17]) or Bayesian statistics ([35]). Here we will be focusing on another successful alternative approach: Granger causality. In recent Cell papers [7, 12], the authors have come to the conclusion that the ordinary differential equation approach outperforms the other reverse engineering approaches (Bayesian network and information theory) in building causal networks. We have demonstrated that the Granger causality achieves better results than the ordinary differential approach [34]. The basic idea of Granger causality can be traced back to Wiener[47] who conceived the notion that, if the prediction of one time series is improved by incorporating the knowledge of a second time series, then the latter is said to have a causal influence on the first. Granger[23, 24] later formalized Wiener’s idea in the context of linear regression models. Specifically, two auto-regressive models are fitted to the first time series – with and without including the second time series – and the improvement of the prediction is measured by the ratio of the variance of the error terms. A ratio larger than one signifies an improvement, hence a causal connection. At worst, the ratio is 1 and signifies causal independence from the second time series to the first. Geweke’s decomposition of a vector autoregressive process ([20, 21]) led to a set of causality measures which have a spectral representation and make the interpretation more informative and useful by extending Granger causality to the frequency domain. In this chapter, we aim to present Granger causality and how its original formalism has been extended to address biological and computational issues, as summarized in Fig. 5.1.
منابع مشابه
Stock Market Interactions between the BRICS and the United States: Evidence from Asymmetric Granger Causality Tests in the Frequency Domain
The interaction of BRICS stock markets with the United States is studied using an asymmetric Granger causality test based on the frequency domain. This type of analysis allows for both positive and negative shocks over different horizons. There is a clear bivariate causality that runs both ways between the United States stock market and the respective BRICS markets. In addition, both negative a...
متن کاملThe Impact of Human Capital on FDI with New Evidence from Bootstrap Panel Granger Causality Analysis
T his study evaluates the causality relationship between human capital and foreign direct investment inflow in twenty-six OIC (the Organization of Islamic Cooperation) countries over the period 1970–2014. We employed the panel Granger non-causality testing approach of Kònya (2006) that is based on seemingly unrelated regression (SUR) systems, and Wald tests with country specific boot...
متن کاملCore Inflation and Economic Growth, Does Nonlinearity Matters? A Nonlinear Granger Causality Analysis
T his empirical analysis endeavors to trace out the causal nexus between core inflation and economic growth from the perspective of twenty worlds’ leading economy with the help of the nonlinear Granger causality approach by using time series data from 1981 to 2016. Based on nonlinear Granger causality results, it has been found that there is unidirectional casualty running from core ...
متن کاملA Long-term Casual Nexus between Stock Price and Dividends: Empirical Evidence from the Accepted Firms in Tehran Stock Exchange
this world; though all the discussions are focused on the causal relationships in allthe scientific arguments. One of the methods to study the designed causal relationshipsobjectively is Granger causality test. This paper aims to investigate the longtermcausal relationship between the stock price and dividends. The statisticalpopulation includes 180 active companies in Stock Exchange of Tehran ...
متن کاملاثرات کوتاهمدت و بلندمدت مخارج دولت و تورم بر سرمایهگذاری بخش خصوصی در ایران
This article examines the relationships between government expenditures (current and capital) and private investment over the period of 1959- 2007 in Iran. To examine the long and short run relationships between model variables, the dynamic auto regression approach with distributed lag (ARDL) and the standard Granger causality relationship has been used. Findings indicate that based on long and...
متن کاملCausal Nexus between Inflation and Economic Growth of Japan
This study aims to evaluate the link between economic growth and consumer price index (CPI) in Japan for the period of 1980-2014. Initial series were adjusted for stationarity using the Augmented Dickey- Fuller (ADF) test for unit root followed by the application of Johansen Co-integration Test in order to examine the long-run relationship among the variables, while the causalities were evaluat...
متن کامل